
Design and Implementation of High-speed Arbiter for
Large Scale VOQ Crossbar Switches

Chun Kit Hung, Mounir Hamdi, and Chi-Ying Tsui
Hong Kong University of Science and Technology

Clear Water Bay,
Kowloon, Hong Kong

ABSTRACT
Crossbars are frequently used as the switching fabric for high-
performance packet switches (1P routers, ATM switches, Ethernet
switches). The performance, functionality, and scalability (in terms
of line rate andor number of ports) of these switches are directly
related to the arbitrationlscheduling algorithm which must retrieve
the state information of input queues, compute a (pseudo-)
optimum matching, and configure the crossbar accordingly, all
within one packet cycle. In this paper, we give a detailed hardware
design and implementation of a novel arbitration scheme, named
RDSRR [I] , that lends itself well to high-speed implementation,
while at the same time achieves excellent performance under a
variety of traffic patterns. We present a novel pipeline technique
and the full-custom design of the arbiter circuit using TSMC 0.25

m CMOS techn,ology which can support switch sizes of up to 256
x 256 at a line rate of I O Gbps.

1. INTRODUCTION

Most of the academic research and the commercially available
crossbar switches are based on virtual output queuing (VOQ).
Using VOQ, at each input a separate FIFO queue is maintained for
each output. After a forwarding decision has been made, arriving
packets are placed in the queues corresponding to their outgoing
ports. An arbitration algorithm then examines the contenls of all
the input queues, and finds a conflict-free match between inputs
and outputs. As a result, these arbitrationlscheduling algorithms are
key to the performance, scalability, and hardware complexity of
VOQ switches.

Numerous scheduling algorithms, such as PIM. ISLIP, RPA,
FIRM, and DRRM, that use parallelism, arbiters, and iteration have
been proposed for VOQ crossbar switches [21, [31. [41 [51, [61.
Briefly, these arbitration algorithms iterate the following steps until
no more requests can be accepted (or for a given number of
iterations):

I. Request: Each unmatched input sends a request to every
output for which it has a queued cell.

2. Cranr (outpurs): If an unmatched output receives any
request, it grants one by selecting (in some fashion) a request
uniformly over all requests.

3. Accept (inputs): If an unmatched input receives grants, it
accepts one by selecting (in some fashion) an output randomly
among those grant to this input.

The functional differences among the various algorithms exist only
in the way the outputs choose which input to issue the grant to. and

in the way the inputs choose which grant to accept. However, i t can
have a huge difference in the performance of the switch [61.

Through careful examination of the various algorithms, it has been
found that the performance and complexity of these arbitration
algorithms can be attributed to two key factors: desynchronization
of the output arbiters and efficient pipelining schemes 131. The
desynchronization of output arbiters i s essentially making the
outputs point to different inputs. We know that if several outputs
grant the same input, no matter how this input chooses. only one
match can be made, and the other outputs will be idle. To get as
many matches as possible, i t is better that each output grants a
different input. Since each output will select the highest priority
input if a request is received from this input, it is better to keep the
output pointers desynchronized. As for pipelining, by making the
request, grant, and accept stages busy all the time, that would allow
us to iterate the algorithm for more iterdions. This i n hum
improves the performance ofthe matching process.

In this connection, we used an arbitration algorithm. RDSRR. that
achieves the best desynchronization effect [I] . RDSRR was shown
to outperform state-of-the-art related scheduling algorithms, and by
using intelligent pointer-movement schemes i t performs well under
any traffic pattem. RDSRR scheduling algorithm can also simplify
the arbiter design as the pointers update mechanism in both input
and output sides are always increase by one. As a result. the pointer
circuitry can be easily embedded in to the arbiter design which can
greatly reduce the wiring area in the layout. The other feature of
RDSRR is that the searching direction of the output arbiter will be
changed from clock-wise to counter-clockwise direction
altematively at the beginning of each cell time. This feature can
have a better desynchronization and further enhance the
performance of the RDSRR scheduling algorithm.

In this paper, we present the design and implementation of the
arbitration scheme for the RDSRR algorithm. First we propose a
novel pipelining scheme for the design of the RDSRR. In essence.
we are able to achieve one more iteration of the algorithm using the
same amount of hardwardtime complexity. Secondly we also
present the efficient circuit design techniques that minimize the
delay bottleneck of the hardware design and at the same time can
support large number of ports.

2. RDSRR Scheduler Architecture

Figure 1 shows the overall architecture of the RDSRR scheduler
which is similar to that of iSlip[7]. The three blocks represent the
request phase, the grant phase, and the accept phase of the
algorithm. The request blocks are used to store and forward the
incoming request vectors 10 the grant blocks. After the request
vectors pass through the grant stage and the accept stage, the

0-7803-7761-31031$17.00 82003 IEEE U-308

scheduler will make a decision by selecting which input and output
ports should be connected. The successive iterations of the
algorithm can help increase the number of inputJoutput matching
during each cell time. A feedback loop is used to mask off those
requests that have been accepted in previous iterations. The
scheduler will not consider the accepted requests again during the
next iteration. In fact, the request blocks are registers, and we can
simply treat them and the grant blocks as a single unit.

""

""

Figure 1. Overall architecture of the scheduler.

3. Proposed Pipelining Scheme

A proper pipelining scheme can increase the throughput of the
whole scheduler. Figure 2a shows the pipelining scheme which is
employed by the iSLIP arbiter that has been implemented in the
Tiny Tera experimental switch designed by Stanford University

This figure shows that three iterations can be executed within each
cell time. After the third iteration, a setup up time is needed to
update the pointers and the request vectors for the next cell time
slot.

In this paper we propose a more optimal pipelining scheme. This is
shown in Figure 2b.

As shown in Figure 2a, after the third iteration of the first cell time
the grant arbiter will be in an idle state. It will be used to schedule
a new connection until the beginning of the second cell time.
Similarly, the accept arbiter will be in an idle state at the beginning
of second cell time. It will start to make the connection decision
after the grant arbiter made a decision in the first iteration of the
second cell time. As a result, these idle states will decrease the
efficiency of the whole scheduler.

By carefully.examining our proposed pipelining scheme, as shown
Figure.Zb, and the pipelining scheme for the Tiny Tera, we can see
that our,proposed scheme can execute one additional iteration of
the algorithm within the same amount of time. This is significantly
important, Since increasing the number of iterations of the
arbitration algorithm can greatly improve the performance of the
switch.

In this proposed scheme, the request vectors will be updated after
the third and the fourth iterations during each cell time. As a result,
the grant arbiter (in the second cell time) can take in the updated
data after the third iteration of the first cell time.

The new data taken in during the first iteration of the second cell
time have ignored the acceptance status in the fourth iteration of

~71.

the first cell time. As a result, we have two cases that we need to
address.

1. There are no more acceptances in the fourth iteration of the first
cell time. If this case happens, it means that the updated data taken
by the grant arbiter during the second cell time are correct. Hence,
no more acceptances in the forth iteration implies that the crossbar
configuration is the same after the third and the fourth iteration.

2. There are some acceptances in the.fourth iteration of the first cell
time. If this happens, it means that the updated data taken by the
grant arbiter during the second cell time may be incorrect. This is
due to the fact that the request vectors taken by the grant arbiter
have not yet been updated by the accept arbiter during the fourth
iteration of the first cell time. In this case empty cell may be sent
across the switch fabric.

However, the probability of sending empty cell is low. It is because
if there are any acceptances in the fourth iteration of the first cell
time, it means that the VOQ of these "just accepted" signal(s)
cannot be updated for the next cell time and the request vector
value for these VOQs will still be "I". Only when these '.just
accepted" VOQs do not have any cell waiting for scheduling in the
next cell time then empty cell will be sending across the crossbar
switch. The impact of this on the overall scheduling performance
will be insignificant when the switch is under heavy traffic as the
VOQs are seldom empty.

Simulation results shows that our proposed scheme gives a higher
performance than the scheme used in Tiny Tera. The simulation
results will be shown in section 6.

i

!

Figure 2. Pipelining schemes used i n iterative scheduling algonthms.

4. Arbiter Hardware Design
In this section, we will illustrate the hardware design of the
RDSRR arbitration algorithm. Briefly, an arbiter schedules the
crossbar connections based on the incoming request vectors and
the pointer update mechanism. In particular. the most critical
hardware design issue of the arbiter is the design of the priority
encoder [7] . As a result, designing a high-speed priority encoder
can reduce the arbitration time significantly. In the following we
will introduce the design of a high-speed arbiter architecture.

Both of the SLIP and RDSRR arbitration algorithms base their
scheduling decision on the round-robin searching mechanism.
These two scheduling algorithms will stan the search based on the
current pointer position. Whenever it reaches the last element, it

U-309

will jump back to the first element and search again. Obviously,
this round-robin searching mechanism will form a loop. Therefore,
we can apply a similar technique to break this feedback loop just
like whai has been done for the BLIP design in the Tiny Tera.
Here two priority encoders are used. The first one is responsible for
the search start at the beginning element until the end element.
While the other one is responsible for the search starting at the
current pointer position until the end element (figure 3). As
mentioned before, for RDSRR, the pointer is updated by simply
increment by 1. Therefore this simple pointer updating mechanism
can be embedded within the each arbiter which can reduce the
layout area o f a scalable arbiter. Another feature for RDSRR is that
the pointer search alternates between clock-wise and anti-clockwise
direction. To support different directions for the priority encoding,
we add a flipping block to mirror-flip the filtered request vector
before sending to the priority encoder if anti-clockwise search is
needed, The corresponding output is flipped at the output to get the
correct grant signal vector.

+
C n oscn

Figure 3. Proposed arbiter architecture

5. Priority Encoder
In this work we design the scheduler such that it can support large
number of ports, such as 256x256. In'order to support a 256x256
switch. the priority encoder should be fast enough to trace through
the 256 bits request vector. Here we use a hierarchical tree
structure and domino NOR gates to improve the speed of the 256
bit priority encoder (PE). The overall architecture of the priority
encoder is shown in Figure 4 which shows the architecture of a
priority encoder with 16 inputs. Priority encoder with 256 inputs
can be done in a similar fashion. The 16-bit request vector input to
the PE is separated into four groups (4 bits in each group) where
each group is processed by the "4 bits Priority Encoder". Figure 5
shows the detailed structure of this 4-bit priority encoder. For
example, if "0011" is fed into a, b, c and d respectively. I t will
return "0010" for the 4 bits grant signal and it will give a "1" on
the anyGnt signal.

This circuit can trace the first "I" appearing in the request vector in
parallel, the output will show the bit position of this "I", that is
"0010. The anyGnt signal will return "I" if there is any "1"
appearing in the request vector.

After four groups of 4 bits vectors pass through the 4-bit priority
encoder, we consider all the processed results by using the anyGnt
signals.

I f all the 4 bits vectors contain at least one " I " in the request
vectors, all the four anyGnt signals are "1" (that is, 1 I I I) . These
anyGnt signals will be fed into the controller. The controller, as

shown in Figure 6 , will use these signals to test if the previous 4-
bit priority encoder has any grant signals or not. If it has. it will set
the remaining grant block signals to zero vectors. The OR gate in
the 4-bit priority encoder, the NOR gate in the controller, and the
multiplexer form the critical path of the hardware design.

This structure can be easily extended to a 256-bit priority encoder
by using sixteen 16-bit priority encoders (each based on the
structure shown in Figure 6) and 16 bits controller. In this case, the
maximum fan-in for each OR gate and NOR gate will increase.
However by using a 16-bit dynamic NOR gate structure, the
loading is reduced and the speed is improved. - ... - - .- __ -. . -. E - .-

Figure 4. A 16-bit priority encoder anhitecture.
. I .b"SX,Pmd

:E==-
Figure 5. The design of 4-bit priority encoder.

Figure 6. The design of the conrmller used in 16-bii pnanty encoder.

6. Experimental Results
The proposed pipeline structure can be used in any maximal
matching scheduling algorithms, e.g., islip and RDSRR. To verify
the effect of the proposed pipeline structure, we simulated the
RDSRR scheduling algorithm using the pipeline structure and
compared the performance with that using the original pipeline
Structure employed in Tiny Tera. Comparisons were done for three
different traffic models: uniform Bernoulli i.i.d., uniform bursty
and unbalance traffic. The switch evaluated is a 128 x 128 switch.

II-310

The results were collected between 5O,0OOLh cell time slots and
500,00OCh cell time slots. The number of iteration is assumed to be
one. The results are summarized in Figures 7-9.

1211s.*n- IYmmc
10’

U’)

I t
i

.,.L-~~~. ! ~ ~~1 ~~~~ -: ~~i~~~ ~~. ~ , i
a , 0 : I, 0‘ . I a * 0 , 01 0.I I

Figure 7. Average delay under uniform traffic

,l.ll.----
,#-.-,____---- I-.

---*TI,”,
-w-- 1 ,’ ; ,,.’ .!

,, 11,

Layout Size

Figure 9. Average delay under non-uniform traffic

292 m x 2 1 3 m

Figures 7 and 8 show that the proposed pipeline scheme has a
significant improvement under Bemoulii i i d . uniform and uniform
bursty traffic while Figure 9 shows the proposed scheme gives a
little improvement under the non-uniform traffic.

Figure 10 shows the layout of the 256 bits priority encoder using
TSMC 0.25 m SCNSM-DEEP (lambda=O. 12) CMOS technology.
The size of the layout and the post layout HSPICE simulation
result are shown in table 1. Results 3re simulated under typical
process comer, normal condition with 2.5V power supply voltage.

I 256 bit Priority Encoder

Past Layout Simulation delay 2.1 ns

7. SUMMARY

In this paper, we have proposed a novel pipelining scheme for our
previously designed RDSSR arbitration algorithm. This pipelining
scheme allows us to iterate the algorithm for one more iteration
when comparing with conventional pipelining schemes. As a result,
significant improvement in performance can be achieved. In
addition, we have presented the detail hardware design for this
arbitration scheme. From the experimental results it is shown that
we can easily support lines rates of OC 192 and large switch size of
up to 256 x 256.

8. EFERENCES
[I) Y. Jiang and M. Hamdi, “A Fully Desynchronizd Round-

Robin Matching Scheduler for a VOQ Packet Switch
Architecture,” lnremorional Workshop of High-Performance
Swirching ond Rouring, Dallas, 2001

[2] T. Anderson. S. Owicki, I. Saxe, and C. Thacker, “High Spied
Switch Scheduling for Local Area Networks.” ACM Trans.
Comput. Syst., pp.319-52, Nov.1993.

[3] N. Mckeown, “Scheduling Cells in an Input-Queued Switch.”
PhD thesis, Uni. of Califomla at Berkeley. May 1995.

[4] D.N. Serpanos, and P. 1. Antoniadis, “FIRM: A Class of
Distributed Scheduling Algorithms for High-speed ATM
Switch,” Proc. IEEEATM Workshop, May 1998.

[5] N. McKeown , “iSLIP: A Scheduling Algorithm for Input-
Queued Switches,” IEEE Transacrions on Networking, Vol I ,
No.2. April 1999.

161 M. G. Ajmone Marsan, A. Bianco, E. Fllippi. and E.
Leonardi, “On the Behavior of Input Queueing Architectures.”
Eur. Trans. Telecommunicarions, Vol. 10, No. 2, pp. 111-124.
Mar. 1999.

[7] P. Gupta and N. McKeown, “Design and Implementation of a
Fast Crossbar Scheduler,” IEEEMicro Magazine, Jan 1999.

[SI Y. Jiang. Packer Scheduling Algorirhms for Virruol Ourpur
Queued Swirches. MPhii thesis, Department of Computer
Science, Hong Kong University of Science and technology,
Hong Kong, 2001

Figure 10. Layoul of the 256 bits pnonty encoder

U-311

