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ABSTRACT 
Crossbars are frequently used as the switching fabric for high- 
performance packet switches (1P routers, ATM switches, Ethernet 
switches). The performance, functionality, and scalability (in terms 
of line rate andor number of ports) of these switches are directly 
related to the arbitrationlscheduling algorithm which must retrieve 
the state information of input queues, compute a (pseudo-) 
optimum matching, and configure the crossbar accordingly, all 
within one packet cycle. In this paper, we give a detailed hardware 
design and implementation of a novel arbitration scheme, named 
RDSRR [ I ] ,  that lends itself well to high-speed implementation, 
while at the same time achieves excellent performance under a 
variety of traffic patterns. We present a novel pipeline technique 
and the full-custom design of the arbiter circuit using TSMC 0.25 

m CMOS techn,ology which can support switch sizes of up to 256 
x 256 at a line rate of I O  Gbps. 

1. INTRODUCTION 

Most of the academic research and the commercially available 
crossbar switches are based on virtual output queuing (VOQ). 
Using VOQ, at each input a separate FIFO queue is maintained for 
each output. After a forwarding decision has been made, arriving 
packets are placed in the queues corresponding to their outgoing 
ports. An arbitration algorithm then examines the contenls of all 
the input queues, and finds a conflict-free match between inputs 
and outputs. As a result, these arbitrationlscheduling algorithms are 
key to the performance, scalability, and hardware complexity of 
VOQ switches. 

Numerous scheduling algorithms, such as PIM. ISLIP, RPA, 
FIRM, and DRRM, that use parallelism, arbiters, and iteration have 
been proposed for VOQ crossbar switches [21, [31. [41 [51, [61. 
Briefly, these arbitration algorithms iterate the following steps until 
no more requests can be accepted (or for a given number of 
iterations): 

I. Request: Each unmatched input sends a request to every 
output for which it has a queued cell. 

2. Cranr (outpurs): If an unmatched output receives any 
request, it grants one by selecting (in some fashion) a request 
uniformly over all requests. 

3. Accept (inputs): If an unmatched input receives grants, it 
accepts one by selecting (in some fashion) an output randomly 
among those grant to this input. 

The functional differences among the various algorithms exist only 
in the way the outputs choose which input to issue the grant to. and 

in the way the inputs choose which grant to accept. However, i t  can 
have a huge difference in the performance of the switch [61. 

Through careful examination of the various algorithms, it has been 
found that the performance and complexity of these arbitration 
algorithms can be attributed to two key factors: desynchronization 
of the output arbiters and efficient pipelining schemes 131. The 
desynchronization of output arbiters i s  essentially making the 
outputs point to different inputs. We know that if several outputs 
grant the same input, no matter how this input chooses. only one 
match can be made, and the other outputs will be idle. To get as 
many matches as possible, i t  is better that each output grants a 
different input. Since each output will select the highest priority 
input if a request is received from this input, it is better to keep the 
output pointers desynchronized. As for pipelining, by making the 
request, grant, and accept stages busy all the time, that would allow 
us to iterate the algorithm for more iterdions. This i n  hum 
improves the performance ofthe matching process. 

In this connection, we used an arbitration algorithm. RDSRR. that 
achieves the best desynchronization effect [ I ] .  RDSRR was shown 
to outperform state-of-the-art related scheduling algorithms, and by 
using intelligent pointer-movement schemes i t  performs well under 
any traffic pattem. RDSRR scheduling algorithm can also simplify 
the arbiter design as the pointers update mechanism in both input 
and output sides are always increase by one. As a result. the pointer 
circuitry can be easily embedded in to  the arbiter design which can 
greatly reduce the wiring area in the layout. The other feature of 
RDSRR is that the searching direction of the output arbiter will be 
changed from clock-wise to counter-clockwise direction 
altematively at the beginning of each cell time. This feature can 
have a better desynchronization and further enhance the 
performance of the RDSRR scheduling algorithm. 

In this paper, we present the design and implementation of the 
arbitration scheme for the RDSRR algorithm. First we propose a 
novel pipelining scheme for the design of the RDSRR. In essence. 
we are able to achieve one more iteration of the algorithm using the 
same amount of hardwardtime complexity. Secondly we also 
present the efficient circuit design techniques that minimize the 
delay bottleneck of the hardware design and at the same time can 
support large number of ports. 

2. RDSRR Scheduler Architecture 

Figure 1 shows the overall architecture of the RDSRR scheduler 
which is similar to that of iSlip[7]. The three blocks represent the 
request phase, the grant phase, and the accept phase of the 
algorithm. The request blocks are used to store and forward the 
incoming request vectors 10 the grant blocks. After the request 
vectors pass through the grant stage and the accept stage, the 
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scheduler will make a decision by selecting which input and output 
ports should be connected. The successive iterations of the 
algorithm can help increase the number of inputJoutput matching 
during each cell time. A feedback loop is used to mask off those 
requests that have been accepted in previous iterations. The 
scheduler will not consider the accepted requests again during the 
next iteration. In fact, the request blocks are registers, and we can 
simply treat them and the grant blocks as a single unit. 

"" 

"" 

Figure 1. Overall architecture of the scheduler. 

3. Proposed Pipelining Scheme 

A proper pipelining scheme can increase the throughput of the 
whole scheduler. Figure 2a shows the pipelining scheme which is 
employed by the iSLIP arbiter that has been implemented in the 
Tiny Tera experimental switch designed by Stanford University 

This figure shows that three iterations can be executed within each 
cell time. After the third iteration, a setup up time is needed to 
update the pointers and the request vectors for the next cell time 
slot. 

In this paper we propose a more optimal pipelining scheme. This is 
shown in Figure 2b. 

As shown in Figure 2a, after the third iteration of the first cell time 
the grant arbiter will be in an idle state. It will be used to schedule 
a new connection until the beginning of the second cell time. 
Similarly, the accept arbiter will be in an idle state at the beginning 
of second cell time. It will start to make the connection decision 
after the grant arbiter made a decision in the first iteration of the 
second cell time. As a result, these idle states will decrease the 
efficiency of the whole scheduler. 

By carefully.examining our proposed pipelining scheme, as shown 
Figure.Zb, and the pipelining scheme for the Tiny Tera, we can see 
that our,proposed scheme can execute one additional iteration of 
the algorithm within the same amount of time. This is significantly 
important, Since increasing the number of iterations of the 
arbitration algorithm can greatly improve the performance of the 
switch. 

In this proposed scheme, the request vectors will be updated after 
the third and the fourth iterations during each cell time. As a result, 
the grant arbiter (in the second cell time) can take in the updated 
data after the third iteration of the first cell time. 

The new data taken in during the first iteration of the second cell 
time have ignored the acceptance status in the fourth iteration of 
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the first cell time. As a result, we have two cases that we need to 
address. 

1. There are no more acceptances in the fourth iteration of the first 
cell time. If this case happens, it means that the updated data taken 
by the grant arbiter during the second cell time are correct. Hence, 
no more acceptances in the forth iteration implies that the crossbar 
configuration is the same after the third and the fourth iteration. 

2. There are some acceptances in the.fourth iteration of the first cell 
time. If this happens, it means that the updated data taken by the 
grant arbiter during the second cell time may be incorrect. This is 
due to the fact that the request vectors taken by the grant arbiter 
have not yet been updated by the accept arbiter during the fourth 
iteration of the first cell time. In this case empty cell may be sent 
across the switch fabric. 

However, the probability of sending empty cell is low. It is because 
if there are any acceptances in the fourth iteration of the first cell 
time, it means that the VOQ of these "just accepted" signal(s) 
cannot be updated for the next cell time and the request vector 
value for these VOQs will still be "I". Only when these '.just 
accepted" VOQs do not have any cell waiting for scheduling in the 
next cell time then empty cell will be sending across the crossbar 
switch. The impact of this on the overall scheduling performance 
will be insignificant when the switch is under heavy traffic as the 
VOQs are seldom empty. 

Simulation results shows that our proposed scheme gives a higher 
performance than the scheme used in Tiny Tera. The simulation 
results will be shown in section 6. 

i 

! 

Figure 2. Pipelining schemes used i n  iterative scheduling algonthms. 

4. Arbiter Hardware Design 
In this section, we will illustrate the hardware design of the 
RDSRR arbitration algorithm. Briefly, an arbiter schedules the 
crossbar connections based on the incoming request vectors and 
the pointer update mechanism. In particular. the most critical 
hardware design issue of the arbiter is the design of the priority 
encoder [7 ] .  As a result, designing a high-speed priority encoder 
can reduce the arbitration time significantly. In the following we 
will introduce the design of a high-speed arbiter architecture. 

Both of the SLIP  and RDSRR arbitration algorithms base their 
scheduling decision on the round-robin searching mechanism. 
These two scheduling algorithms will stan the search based on the 
current pointer position. Whenever it reaches the last element, it 
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will jump back to the first element and search again. Obviously, 
this round-robin searching mechanism will form a loop. Therefore, 
we can apply a similar technique to break this feedback loop just 
like whai has been done for the BLIP design in the Tiny Tera. 
Here two priority encoders are used. The first one is responsible for 
the search start at the beginning element until the end element. 
While the other one is responsible for the search starting at the 
current pointer position until the end element (figure 3). As 
mentioned before, for RDSRR, the pointer is updated by simply 
increment by 1. Therefore this simple pointer updating mechanism 
can be embedded within the each arbiter which can reduce the 
layout area o f a  scalable arbiter. Another feature for RDSRR is that 
the pointer search alternates between clock-wise and anti-clockwise 
direction. To support different directions for the priority encoding, 
we add a flipping block to mirror-flip the filtered request vector 
before sending to the priority encoder if anti-clockwise search is 
needed, The corresponding output is flipped at the output to get the 
correct grant signal vector. 

+ 
C n  oscn 

Figure 3. Proposed arbiter architecture 

5. Priority Encoder 
In this work we design the scheduler such that it can support large 
number of ports, such as 256x256. In'order to support a 256x256 
switch. the priority encoder should be fast enough to trace through 
the 256 bits request vector. Here we use a hierarchical tree 
structure and domino NOR gates to improve the speed of the 256 
bit priority encoder (PE). The overall architecture of the priority 
encoder is shown in  Figure 4 which shows the architecture of a 
priority encoder with 16 inputs. Priority encoder with 256 inputs 
can be done in a similar fashion. The 16-bit request vector input to 
the PE is separated into four groups (4 bits in each group) where 
each group is processed by the "4 bits Priority Encoder". Figure 5 
shows the detailed structure of this 4-bit priority encoder. For 
example, if "0011" is fed into a, b, c and d respectively. I t  will 
return "0010" for the 4 bits grant signal and it will give a "1" on 
the anyGnt signal. 

This circuit can trace the first "I" appearing in the request vector in 
parallel, the output will show the bit position of this "I", that is 
"0010. The anyGnt signal will return "I" if there is any "1" 
appearing in the request vector. 

After four groups of 4 bits vectors pass through the 4-bit priority 
encoder, we consider all the processed results by using the anyGnt 
signals. 

I f  all the 4 bits vectors contain at least one " I "  in the request 
vectors, all the four anyGnt signals are "1" (that is, 1 I I I ) .  These 
anyGnt signals will be fed into the controller. The controller, as 

shown in Figure 6 ,  will use these signals to test if the previous 4- 
bit priority encoder has any grant signals or not. If it has. it will set 
the remaining grant block signals to zero vectors. The OR gate in 
the 4-bit priority encoder, the NOR gate in the controller, and the 
multiplexer form the critical path of the hardware design. 

This structure can be easily extended to a 256-bit priority encoder 
by using sixteen 16-bit priority encoders (each based on the 
structure shown in Figure 6) and 16 bits controller. In this case, the 
maximum fan-in for each OR gate and NOR gate will increase. 
However by using a 16-bit dynamic NOR gate structure, the 
loading is reduced and the speed is improved. - ... - - .- __ -. . -. E - .- 

Figure 4. A 16-bit priority encoder anhitecture. 
. I  .b"SX,Pmd 
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Figure 5. The design of 4-bit priority encoder. 

Figure 6. The design of the conrmller used in 16-bii pnanty encoder. 

6. Experimental Results 
The proposed pipeline structure can be used in any maximal 
matching scheduling algorithms, e.g., islip and RDSRR. To verify 
the effect of the proposed pipeline structure, we simulated the 
RDSRR scheduling algorithm using the pipeline structure and 
compared the performance with that using the original pipeline 
Structure employed in Tiny Tera. Comparisons were done for three 
different traffic models: uniform Bernoulli i.i.d., uniform bursty 
and unbalance traffic. The switch evaluated is a 128 x 128 switch. 

II-310 



The results were collected between 5O,0OOLh cell time slots and 
500,00OCh cell time slots. The number of iteration is assumed to be 
one. The results are summarized in Figures 7-9. 
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Figure 7. Average delay under uniform traffic 

,l.ll.---- 
,#-.-,____---- I-. . ..... .. . . . . .. .. 

---*TI,”, 
-w-- 1 ,’ ; ,,.’ .! 

,, 11, 

Layout Size 

Figure 9. Average delay under non-uniform traffic 

292 m x 2 1 3  m 

Figures 7 and 8 show that the proposed pipeline scheme has a 
significant improvement under Bemoulii i i d .  uniform and uniform 
bursty traffic while Figure 9 shows the proposed scheme gives a 
little improvement under the non-uniform traffic. 

Figure 10 shows the layout of the 256 bits priority encoder using 
TSMC 0.25 m SCNSM-DEEP (lambda=O. 12) CMOS technology. 
The size of the layout and the post layout HSPICE simulation 
result are shown in table 1. Results 3re simulated under typical 
process comer, normal condition with 2.5V power supply voltage. 

I 256 bit Priority Encoder 

Past Layout Simulation delay 2.1 ns 

7. SUMMARY 

In this paper, we have proposed a novel pipelining scheme for our 
previously designed RDSSR arbitration algorithm. This pipelining 
scheme allows us to iterate the algorithm for one more iteration 
when comparing with conventional pipelining schemes. As a result, 
significant improvement in performance can be achieved. In 
addition, we have presented the detail hardware design for this 
arbitration scheme. From the experimental results it is shown that 
we can easily support lines rates of OC 192 and large switch size of 
up to 256 x 256. 
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